Face Detect

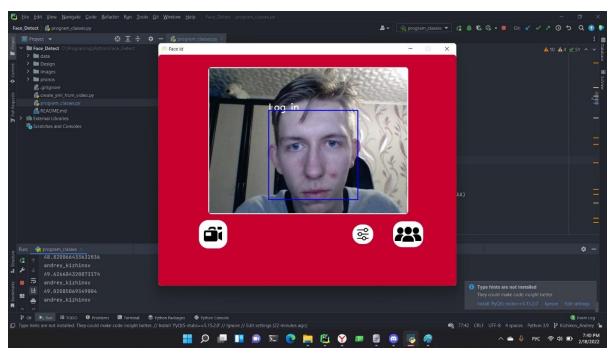
Цель проекта — создать программу, которая будет распознавать лица людей и отображать есть ли они в базе данных программы или нет. Этот проект может решить проблему безопасности предприятий или частных домов. Допустим, он может использоваться у входа в дом и оповещать жильцов, если пытается войти незарегистрированный человек. Данный проект достаточно актуален потому что многие предприятия и заводы до сих пор используют систему пропусков. Эту систему можно заменить на данный проект в качестве уровня доступа на определенные территории. Из всего вышесказанного становится ясно, что основные пользователи продукта — это крупные компании и владельцы частных домов.

Существует несколько решений обозначенной проблемы.

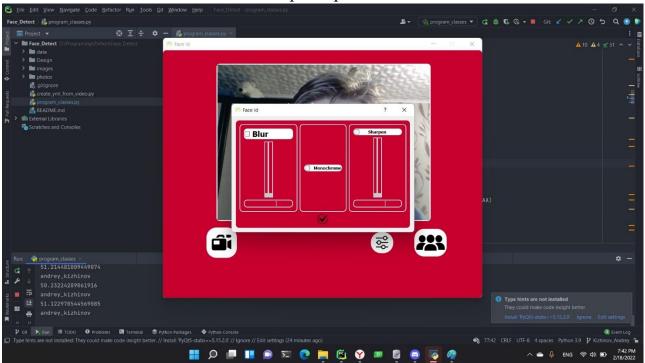
	Каскад хаара	Модель глубокого обучения
Сложность	Нужно найти подходящий xml	Нужно самостоятельно
реализации	файл на официальном	создать модель обучения и,
	репозитории орепсу в	используя мощные сервера,
	GitHub(<u>https://github.com/opencv/o</u>	обучить нейросеть.
	pencv/tree/4.x/data/haarcascades).	
Проблема	Чтобы отличать	Такой проблемы нет,
отличия	зарегистрированных людей от	поскольку нейросеть сразу
разных	незарегистрированных	обучается на конкретных
людей	используется алгоритм LBPH,	людях.
	встроенный в opencv	
	(https://docs.opencv.org/3.4/df/d25/	
	classcv_1_1face_1_1LBPHFaceRec	
	ognizer.html).	

Ресурсы для	При небольшом количестве	Нужны мощные сервера.
работоспосо	зарегистрированных людей	как для обучения нейросети,
бности	программу можно запускать на	так и для использования.
реализации	обычном компьютере.	
Человеческ	Быстрые сроки разработки. Не	Чтобы создать модель
ие ресурсы	нужны глубокие знания в высшей	обучения нужно хорошо
	математике	разбираться в высшей
		математике и долго
		подготавливать данные для
		обучения (возможно
		создание отдельной
		программы для этой задачи)

При анализе решений был выбран каскад хаара, из-за меньших ресурсов и легкости реализации. Ссылки на литературу про каскады хаара. Английский - https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html; Русский - http://wiki.amplab.ru/cgi-bin/awki.cgi/KacкaдXaapa. Проект был реализован в команде из двух человек.

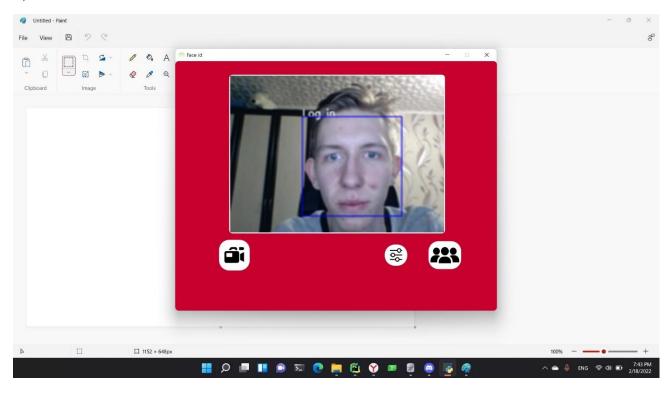

План работы:

- 1) Был выбран язык программирования python из-за удобства разработки. Так же он был выбран потому, что я и мой напарник, ходим уже второй год на курсы по этому языку и достаточно хорошо его знаем.
- 2) Была использована библиотека opencv для работы с потоком видео и каскадов хаара, потому что многое что нам нужно для реализации уже было в этой библиотеке.
- 3) Было решено добавлять нового пользователя в базу данных, прикрепляя видео. Это позволяло нарезать это видео на кадры и передава на обучение алгоритму LBPH.

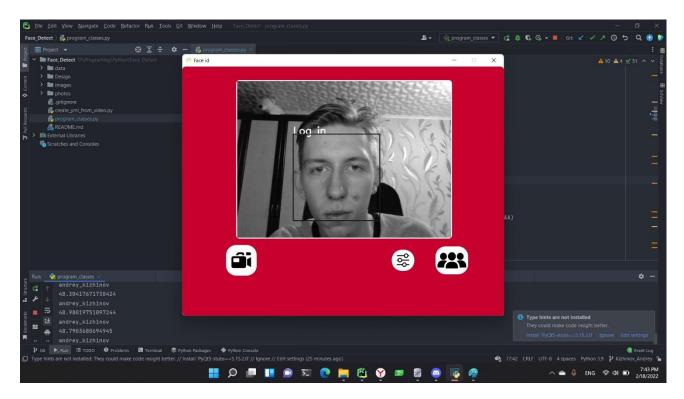

- 4) Фотографии хранятся в папках с именем человека.
- 5) Обучение, реализация распознавания лиц были собраны в GUI приложение для удобства пользования.
- 6) Были добавлены фильтры (чб, блюр, контрастность).
- 7) Была использована база данных SQLite для хранения зарегистрированных пользователей.

Из ресурсов были использованы личные ПК, среда разработки, программа для редактирования баз данных. Все эти ресурсы являются бесплатными и доступны каждому.

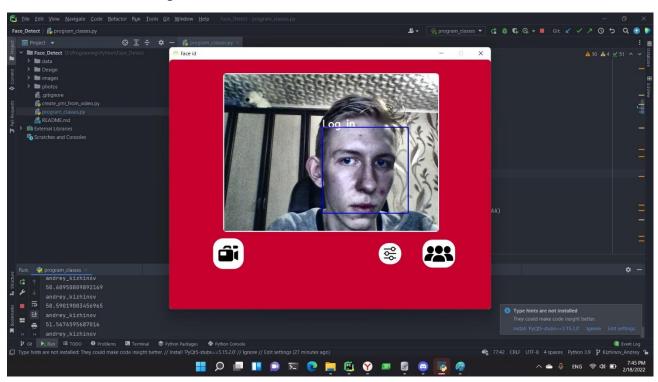
Если человек зарегестрирован в базе данных, то над его квадратом будет находится надпись log in.

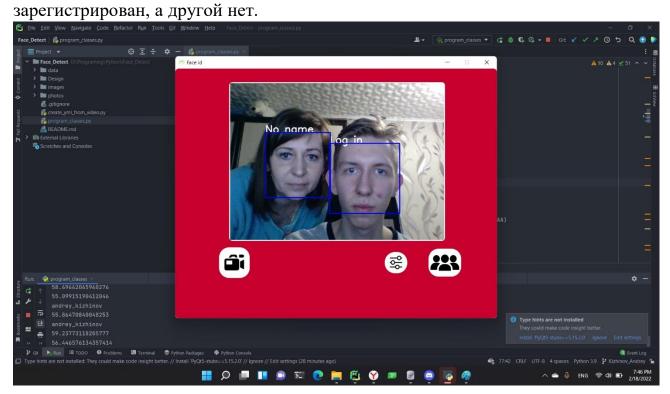


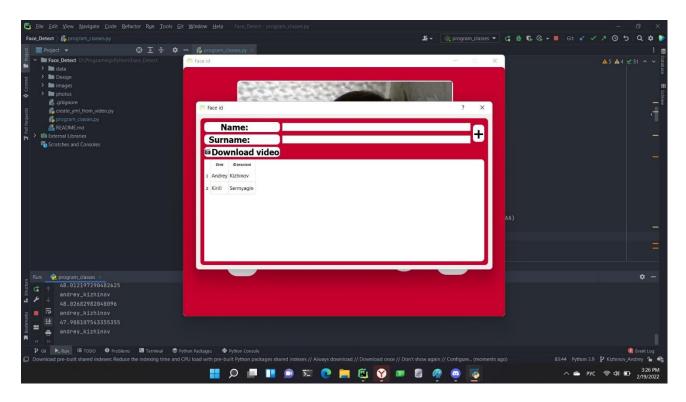
Вот так выглядит меню наложения фильтров:



Ниже даны изображения применения каждого фильтра:


1) Размытие


2) Черно белый фильтр


3) Увеличение контраста

На следующем фото показан пример обработки двух людей, где один

Вот так выглядит окно просмотра и добавления людей в базу данных.

Моей задачей в этом проекте было разработать архитектуру GUI приложения и реализовывать ее. Так же я создал дизайн приложения. Ссылка на

репозитории GitHub с нашим проектом: https://github.com/Kizhinov-Andrey/Face Detect